Integration Techniques
Master various methods of integration.
Integration Techniques
Integration is the process of finding antiderivatives and calculating areas. Here's a comprehensive guide to the essential techniques:
Basic Integration Rules
Fundamental Rules
- $$\int k \, dx = kx + C$$ (where k is a constant)
- $$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$ (where n ≠ -1)
- $$\int \frac{1}{x} \, dx = \ln|x| + C$$
- $$\int e^x \, dx = e^x + C$$
- $$\int \sin x \, dx = -\cos x + C$$
- $$\int \cos x \, dx = \sin x + C$$
- $$\int \sec^2 x \, dx = \tan x + C$$
- $$\int \csc^2 x \, dx = -\cot x + C$$
- $$\int \sec x \tan x \, dx = \sec x + C$$
- $$\int \csc x \cot x \, dx = -\csc x + C$$
Linearity Properties
- $$\int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx$$
- $$\int k \cdot f(x) \, dx = k \cdot \int f(x) \, dx$$ (where k is a constant)
Substitution Method (u-substitution)
Concept
Used when the integrand contains a function and its derivative.
If $$u = g(x)$$, then $$du = g'(x) \, dx$$, and:
$$\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du$$
Steps
- Identify a substitution $$u = g(x)$$ such that $$du = g'(x) \, dx$$ appears in the integrand
- Express the entire integrand in terms of u
- Integrate with respect to u
- Substitute back to express the answer in terms of x
Example
Evaluate $$\int x \cos(x^2) \, dx$$
Let $$u = x^2$$, then $$du = 2x \, dx$$ or $$\frac{du}{2} = x \, dx$$
$$\int x \cos(x^2) \, dx = \int \cos(u) \frac{du}{2} = \frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(x^2) + C$$
Integration by Parts
Formula
$$\int u \, dv = uv - \int v \, du$$
Where $$u$$ and $$dv$$ are chosen from the integrand.
LIATE Rule for Choosing u
Choose u in this order of preference:
- Logarithmic functions: $$\ln x$$, $$\log_a x$$
- Inverse trigonometric functions: $$\arcsin x$$, $$\arctan x$$, etc.
- Algebraic functions: $$x^n$$, $$\sqrt{x}$$, etc.
- Trigonometric functions: $$\sin x$$, $$\cos x$$, etc.
- Exponential functions: $$e^x$$, $$a^x$$, etc.
Example
Evaluate $$\int x \ln x \, dx$$
Let $$u = \ln x$$ and $$dv = x \, dx$$
Then $$du = \frac{1}{x} \, dx$$ and $$v = \frac{x^2}{2}$$
$$\int x \ln x \, dx = \ln x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2 \ln x}{2} - \int \frac{x}{2} \, dx$$
$$= \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C = \frac{x^2 \ln x - x^2/2}{2} + C = \frac{x^2(2\ln x - 1)}{4} + C$$
Trigonometric Integrals
Powers of Sine and Cosine
- $$\int \sin^n x \, dx$$: Use reduction formula or u-substitution
- $$\int \cos^n x \, dx$$: Use reduction formula or u-substitution
- For odd powers, separate one factor and use substitution
- For even powers, use double-angle formulas
Products of Sines and Cosines
- Use trigonometric identities to simplify
- $$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$$
- $$\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$$
- $$\cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$
Example
Evaluate $$\int \sin^2 x \, dx$$
Using the identity $$\sin^2 x = \frac{1 - \cos 2x}{2}$$:
$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2} \int (1 - \cos 2x) \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$
Trigonometric Substitution
When to Use
For integrals involving:
- $$\sqrt{a^2 - x^2}$$: Substitute $$x = a\sin \theta$$ (where $$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$)
- $$\sqrt{a^2 + x^2}$$: Substitute $$x = a\tan \theta$$ (where $$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$)
- $$\sqrt{x^2 - a^2}$$: Substitute $$x = a\sec \theta$$ (where $$0 \leq \theta < \frac{\pi}{2}$$ or $$\pi \leq \theta < \frac{3\pi}{2}$$)
Example
Evaluate $$\int \frac{dx}{\sqrt{4-x^2}}$$
Substitute $$x = 2\sin \theta$$, so $$dx = 2\cos \theta \, d\theta$$ and $$\sqrt{4-x^2} = \sqrt{4-4\sin^2 \theta} = 2\cos \theta$$
$$\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{2\cos \theta \, d\theta}{2\cos \theta} = \int d\theta = \theta + C = \arcsin\left(\frac{x}{2}\right) + C$$
Partial Fractions
When to Use
For rational functions (ratio of polynomials) where the degree of the numerator is less than the degree of the denominator.
Steps
- Factor the denominator completely
- Set up partial fraction decomposition based on the factors:
- For linear factors $$(ax+b)$$: $$\frac{A}{ax+b}$$
- For repeated linear factors $$(ax+b)^n$$: $$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + ... + \frac{A_n}{(ax+b)^n}$$
- For irreducible quadratic factors $$(ax^2+bx+c)$$: $$\frac{Ax+B}{ax^2+bx+c}$$
- For repeated quadratic factors $$(ax^2+bx+c)^n$$: $$\frac{A_1x+B_1}{ax^2+bx+c} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + ... + \frac{A_nx+B_n}{(ax^2+bx+c)^n}$$
- Solve for the constants by:
- Multiplying both sides by the denominator
- Equating coefficients of like terms, or
- Substituting specific values of x
- Integrate each partial fraction term
Example
Evaluate $$\int \frac{5x+2}{x^2-x-2} \, dx$$
Factor the denominator: $$x^2-x-2 = (x-2)(x+1)$$
Set up partial fractions: $$\frac{5x+2}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$
Multiply by $$(x-2)(x+1)$$: $$5x+2 = A(x+1) + B(x-2)$$
Substitute $$x = 2$$: $$5(2)+2 = A(2+1) + B(0) \Rightarrow 12 = 3A \Rightarrow A = 4$$
Substitute $$x = -1$$: $$5(-1)+2 = A(0) + B(-1-2) \Rightarrow -3 = -3B \Rightarrow B = 1$$
$$\int \frac{5x+2}{x^2-x-2} \, dx = \int \left(\frac{4}{x-2} + \frac{1}{x+1}\right) \, dx = 4\ln|x-2| + \ln|x+1| + C = \ln|(x-2)^4(x+1)| + C$$
Integration of Special Functions
Integrals Involving $$\sqrt{a^2 \pm x^2}$$ and $$\sqrt{x^2 - a^2}$$
Use trigonometric substitution or consult a table of integrals.
Integrals Involving Rational Functions of Sine and Cosine
Substitute $$t = \tan(\frac{x}{2})$$, which gives:
- $$\sin x = \frac{2t}{1+t^2}$$
- $$\cos x = \frac{1-t^2}{1+t^2}$$
- $$dx = \frac{2}{1+t^2} \, dt$$
Common Pitfalls and Tips
- Always check your answer by differentiating it
- For u-substitution, make sure the du term appears in the integrand
- When using integration by parts, choose u and dv strategically
- For trigonometric integrals, use appropriate identities to simplify
- In partial fractions, ensure the numerator's degree is less than the denominator's (perform long division if necessary)
- Remember that different techniques can be combined for complex integrals
- Keep a table of common integrals handy for reference
Interactive Visualization
No visualizations available for this topic yet.