Back to Trigonometry & Pre-Calculus
Level 4 • Trigonometry & Pre-Calculus
Trigonometric Functions
Learn about sine, cosine, tangent, and their reciprocal functions.
Progress
Complete the practice questions to track your progress
Trigonometric Functions
Trigonometric functions relate angles to the ratios of sides in a right triangle and are fundamental to mathematics. Here's what you need to know:
Basic Definitions
In Right Triangles
For an angle θ in a right triangle:
- $$\sin(\theta) = \frac{opposite}{hypotenuse}$$
- $$\cos(\theta) = \frac{adjacent}{hypotenuse}$$
- $$\tan(\theta) = \frac{opposite}{adjacent} = \frac{\sin(\theta)}{\cos(\theta)}$$
- $$\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{hypotenuse}{opposite}$$
- $$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{hypotenuse}{adjacent}$$
- $$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{adjacent}{opposite}$$
Unit Circle Definition
For a point (x, y) on the unit circle corresponding to angle θ:
- $$\sin(\theta) = y$$
- $$\cos(\theta) = x$$
- $$\tan(\theta) = \frac{y}{x}$$ (when x ≠ 0)
Domains and Ranges
- Sine: Domain: All real numbers; Range: [-1, 1]
- Cosine: Domain: All real numbers; Range: [-1, 1]
- Tangent: Domain: All real numbers except $$\frac{\pi}{2} + n\pi$$ (where n is an integer); Range: All real numbers
- Cosecant: Domain: All real numbers except $$n\pi$$ (where n is an integer); Range: (-∞, -1] ∪ [1, ∞)
- Secant: Domain: All real numbers except $$\frac{\pi}{2} + n\pi$$ (where n is an integer); Range: (-∞, -1] ∪ [1, ∞)
- Cotangent: Domain: All real numbers except $$n\pi$$ (where n is an integer); Range: All real numbers
Special Angles
Values of trigonometric functions at common angles:
Angle | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
Radians | 0 | $$\frac{\pi}{6}$$ | $$\frac{\pi}{4}$$ | $$\frac{\pi}{3}$$ | $$\frac{\pi}{2}$$ |
$$\sin(\theta)$$ | 0 | $$\frac{1}{2}$$ | $$\frac{\sqrt{2}}{2}$$ | $$\frac{\sqrt{3}}{2}$$ | 1 |
$$\cos(\theta)$$ | 1 | $$\frac{\sqrt{3}}{2}$$ | $$\frac{\sqrt{2}}{2}$$ | $$\frac{1}{2}$$ | 0 |
$$\tan(\theta)$$ | 0 | $$\frac{\sqrt{3}}{3}$$ | 1 | $$\sqrt{3}$$ | undefined |
Graphs of Trigonometric Functions
Sine Function
$$y = \sin(x)$$
- Period: $$2\pi$$
- Amplitude: 1
- x-intercepts: $$x = n\pi$$ (where n is an integer)
Cosine Function
$$y = \cos(x)$$
- Period: $$2\pi$$
- Amplitude: 1
- x-intercepts: $$x = \frac{\pi}{2} + n\pi$$ (where n is an integer)
Tangent Function
$$y = \tan(x)$$
- Period: $$\pi$$
- Vertical asymptotes: $$x = \frac{\pi}{2} + n\pi$$ (where n is an integer)
Transformations
General Form
$$y = A \sin(B(x - C)) + D$$ or $$y = A \cos(B(x - C)) + D$$
- $$A$$ affects the amplitude (|A|)
- $$B$$ affects the period ($$\frac{2\pi}{|B|}$$)
- $$C$$ affects the phase shift (horizontal shift)
- $$D$$ affects the vertical shift
Inverse Trigonometric Functions
Definitions
- $$\sin^{-1}(x)$$ or $$\arcsin(x)$$: The angle whose sine is x
- $$\cos^{-1}(x)$$ or $$\arccos(x)$$: The angle whose cosine is x
- $$\tan^{-1}(x)$$ or $$\arctan(x)$$: The angle whose tangent is x
Domains and Ranges
- Arcsine: Domain: [-1, 1]; Range: [$$-\frac{\pi}{2}, \frac{\pi}{2}$$]
- Arccosine: Domain: [-1, 1]; Range: [0, π]
- Arctangent: Domain: All real numbers; Range: ($$-\frac{\pi}{2}, \frac{\pi}{2}$$)
Trigonometric Identities
Fundamental Identities
- Reciprocal Identities:
- $$\csc(\theta) = \frac{1}{\sin(\theta)}$$
- $$\sec(\theta) = \frac{1}{\cos(\theta)}$$
- $$\cot(\theta) = \frac{1}{\tan(\theta)}$$
- Pythagorean Identities:
- $$\sin^2(\theta) + \cos^2(\theta) = 1$$
- $$1 + \tan^2(\theta) = \sec^2(\theta)$$
- $$1 + \cot^2(\theta) = \csc^2(\theta)$$
- Quotient Identities:
- $$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$
- $$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$$
Sum and Difference Formulas
- $$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
- $$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
- $$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$
Double-Angle Formulas
- $$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
- $$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$
- $$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$
Half-Angle Formulas
- $$\sin^2(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{2}$$
- $$\cos^2(\frac{\theta}{2}) = \frac{1 + \cos(\theta)}{2}$$
- $$\tan^2(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{1 + \cos(\theta)}$$
Applications
Solving Triangles
- Law of Sines: $$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
- Law of Cosines: $$c^2 = a^2 + b^2 - 2ab\cos(C)$$
Area of a Triangle
$$Area = \frac{1}{2}ab\sin(C)$$
Real-World Applications
- Navigation and surveying
- Periodic phenomena (sound waves, light waves, etc.)
- Circular motion
- Architecture and engineering
Common Pitfalls and Tips
- Remember that angles can be measured in degrees or radians (most calculus uses radians)
- Be careful with the domains of trigonometric functions, especially tangent and secant
- When using the Law of Sines, be aware of the ambiguous case (SSA)
- Memorize the values of trigonometric functions at special angles
- Practice converting between different forms of trigonometric expressions using identities
- When graphing, pay attention to period, amplitude, phase shift, and vertical shift
Interactive Visualization
Interactive Visualization
Interact with the visualization to better understand the mathematical concepts.
Practice Questions
Question 1 of 5
Find sin(30°) exactly.