Back to Trigonometry & Pre-Calculus
Level 4Trigonometry & Pre-Calculus

Trigonometric Functions

Learn about sine, cosine, tangent, and their reciprocal functions.

Progress
Complete the practice questions to track your progress

Trigonometric Functions

Trigonometric functions relate angles to the ratios of sides in a right triangle and are fundamental to mathematics. Here's what you need to know:

Basic Definitions

In Right Triangles

For an angle θ in a right triangle:

  • $$\sin(\theta) = \frac{opposite}{hypotenuse}$$
  • $$\cos(\theta) = \frac{adjacent}{hypotenuse}$$
  • $$\tan(\theta) = \frac{opposite}{adjacent} = \frac{\sin(\theta)}{\cos(\theta)}$$
  • $$\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{hypotenuse}{opposite}$$
  • $$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{hypotenuse}{adjacent}$$
  • $$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{adjacent}{opposite}$$

Unit Circle Definition

For a point (x, y) on the unit circle corresponding to angle θ:

  • $$\sin(\theta) = y$$
  • $$\cos(\theta) = x$$
  • $$\tan(\theta) = \frac{y}{x}$$ (when x ≠ 0)

Domains and Ranges

  • Sine: Domain: All real numbers; Range: [-1, 1]
  • Cosine: Domain: All real numbers; Range: [-1, 1]
  • Tangent: Domain: All real numbers except $$\frac{\pi}{2} + n\pi$$ (where n is an integer); Range: All real numbers
  • Cosecant: Domain: All real numbers except $$n\pi$$ (where n is an integer); Range: (-∞, -1] ∪ [1, ∞)
  • Secant: Domain: All real numbers except $$\frac{\pi}{2} + n\pi$$ (where n is an integer); Range: (-∞, -1] ∪ [1, ∞)
  • Cotangent: Domain: All real numbers except $$n\pi$$ (where n is an integer); Range: All real numbers

Special Angles

Values of trigonometric functions at common angles:

Angle 30° 45° 60° 90°
Radians 0 $$\frac{\pi}{6}$$ $$\frac{\pi}{4}$$ $$\frac{\pi}{3}$$ $$\frac{\pi}{2}$$
$$\sin(\theta)$$ 0 $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ 1
$$\cos(\theta)$$ 1 $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ 0
$$\tan(\theta)$$ 0 $$\frac{\sqrt{3}}{3}$$ 1 $$\sqrt{3}$$ undefined

Graphs of Trigonometric Functions

Sine Function

$$y = \sin(x)$$

  • Period: $$2\pi$$
  • Amplitude: 1
  • x-intercepts: $$x = n\pi$$ (where n is an integer)

Cosine Function

$$y = \cos(x)$$

  • Period: $$2\pi$$
  • Amplitude: 1
  • x-intercepts: $$x = \frac{\pi}{2} + n\pi$$ (where n is an integer)

Tangent Function

$$y = \tan(x)$$

  • Period: $$\pi$$
  • Vertical asymptotes: $$x = \frac{\pi}{2} + n\pi$$ (where n is an integer)

Transformations

General Form

$$y = A \sin(B(x - C)) + D$$ or $$y = A \cos(B(x - C)) + D$$

  • $$A$$ affects the amplitude (|A|)
  • $$B$$ affects the period ($$\frac{2\pi}{|B|}$$)
  • $$C$$ affects the phase shift (horizontal shift)
  • $$D$$ affects the vertical shift

Inverse Trigonometric Functions

Definitions

  • $$\sin^{-1}(x)$$ or $$\arcsin(x)$$: The angle whose sine is x
  • $$\cos^{-1}(x)$$ or $$\arccos(x)$$: The angle whose cosine is x
  • $$\tan^{-1}(x)$$ or $$\arctan(x)$$: The angle whose tangent is x

Domains and Ranges

  • Arcsine: Domain: [-1, 1]; Range: [$$-\frac{\pi}{2}, \frac{\pi}{2}$$]
  • Arccosine: Domain: [-1, 1]; Range: [0, π]
  • Arctangent: Domain: All real numbers; Range: ($$-\frac{\pi}{2}, \frac{\pi}{2}$$)

Trigonometric Identities

Fundamental Identities

  • Reciprocal Identities:
    • $$\csc(\theta) = \frac{1}{\sin(\theta)}$$
    • $$\sec(\theta) = \frac{1}{\cos(\theta)}$$
    • $$\cot(\theta) = \frac{1}{\tan(\theta)}$$
  • Pythagorean Identities:
    • $$\sin^2(\theta) + \cos^2(\theta) = 1$$
    • $$1 + \tan^2(\theta) = \sec^2(\theta)$$
    • $$1 + \cot^2(\theta) = \csc^2(\theta)$$
  • Quotient Identities:
    • $$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$
    • $$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$$

Sum and Difference Formulas

  • $$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
  • $$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
  • $$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$

Double-Angle Formulas

  • $$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
  • $$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$
  • $$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$

Half-Angle Formulas

  • $$\sin^2(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{2}$$
  • $$\cos^2(\frac{\theta}{2}) = \frac{1 + \cos(\theta)}{2}$$
  • $$\tan^2(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{1 + \cos(\theta)}$$

Applications

Solving Triangles

  • Law of Sines: $$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
  • Law of Cosines: $$c^2 = a^2 + b^2 - 2ab\cos(C)$$

Area of a Triangle

$$Area = \frac{1}{2}ab\sin(C)$$

Real-World Applications

  • Navigation and surveying
  • Periodic phenomena (sound waves, light waves, etc.)
  • Circular motion
  • Architecture and engineering

Common Pitfalls and Tips

  • Remember that angles can be measured in degrees or radians (most calculus uses radians)
  • Be careful with the domains of trigonometric functions, especially tangent and secant
  • When using the Law of Sines, be aware of the ambiguous case (SSA)
  • Memorize the values of trigonometric functions at special angles
  • Practice converting between different forms of trigonometric expressions using identities
  • When graphing, pay attention to period, amplitude, phase shift, and vertical shift

Interactive Visualization

Interactive Visualization

Interact with the visualization to better understand the mathematical concepts.

Practice Questions

Question 1 of 5
Find sin(30°) exactly.